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Introduction

Synthesis of specific nano- and mesoporous structures deco-
rated by chemically active sites has received increasing at-
tention over the past decade in view of their various applica-
tions.[1–30] The chemical properties lining the pores walls
allow the selective loading inside the particles in high con-
centrations of a target ion or material though this may be
present at low concentrations in the external solution. The
interest of such properties for filtration, sequestration of de-
sired ions or molecules is extremely high for controling of
the quality of fluids in everyday and industrial applications
as well as for environmental purposes, in particular those re-

lated to the secure disposal of dilute radioactive wastes in
nuclear plants exhausts of cooling water.

In such applications, the surfaces of nano- or mesopores
are lined with highly selective complexation or chelating
agents which may readily trap coordinatively any desired
species with high efficiency. Note that whenever the corre-
sponding site-target molecular assembly is designed to be re-
active chemically or biochemically, the same system may be
used as a dispersed catalyst for heterogeneous supported
catalysis (see e.g., refs. [13,14,18,19,26]). Finally, one may
even invoke the potential of such structures for the precise
and local deliverance of drugs provided that the presence of
a target cell or tissue would lead to a specific (e.g., redox,
pH) decrease of the complexing or chelating ability of the
nanopore surfaces.[7,27]

This brief overview of effective and expected applications
based on the inorganic “sponges” (see e.g., ref. [17]) concept
explains why many synthetic avenues have been explored in
order to offer efficiently tailored compact nano- and meso-
porous frames decorated by adequate highly complexing li-
gands or by reactive molecular catalysts.

Until now, most of the works produced in this area have
been devoted to the syntheses and experimental testing
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mostly driven on empirical views for the most part relying
on chemical activity rationales. However, the diffusion-reac-
tion patterns created inside such nano- or mesoporous mate-
rials, which allow their cross-communications with the bulk
solution, necessarily crucially control the physicochemical
efficiency of the systems. This can be understood readily
upon recalling that when any characteristic size parameter is
made smaller and smaller, the usual ratios between size and
surface, on the one hand, and between surface and volume,
on the other hand, vary so that surface effects dominate
volume ones, and size effects dominate surface ones. This
shows that our “macroscopic” chemical knowledge and
views may not apply readily and may even lead to wrong
considerations.

From the point of view of chemical efficiency only, one
wants to decrease the pore diameter sizes, so as to increase
their developed lining surface area, and decrease the inert
material bulk, that is, the average distance between individ-
ual pores. The consequent synthetic purpose is then to reach
objects most exclusively formed of nanoscopically folded
active surfaces, that is, of particles consisting more or less of
hollow volumes framed by dense packing of bundles of
nano- or mesotubes separated by thinner and thinner inac-
tive walls, which only goal it is to structure its shape and ri-
gidity. Note that similar materials, that is, with comparable
structures are also designed for applications as modern
nano-/mesoporous chromatographic phases in chromato-
graphic methods. However, and despite many resemblances
in structures and mass-transfer equations governing their
functionalities, the chromatographic phase differs from the
cases envisioned here in many ways (compare, e.g., ref. [31]
for recent important contributions in this area). The main
differences stem from the observation that chromatographic
phases require weak and reversible interactions between the
target species and the nanopore, and involve target species
in rather large concentrations. Conversely, here the interac-
tions must be strong and irreversible to result in an efficient
sequestration of the species inside the material and must be
able to deal with very dilute target species. Another differ-
ence is the hydrodynamic regimes of the solutions that con-
tain the porous particles with the consequence that the dif-
fusion layers extending around the particle (see Figure 1b)
may differ significantly.

On the other hand, namely, from a physicochemical point
of view, decreasing the radius, Rpore, of such nanotubes as
much as possible with a constant surface area A requires
their average length, L, to become infinite compared with
their radius: L=A/ ACHTUNGTRENNUNG(2pRpore)@Rpore. Diffusion within an in-
finitely long cylinder with a radius not far from molecular
dimensions is extremely slow. Indeed, the duration time for
a species with a diffusion coefficient D (true one or effective
one) to reach the far end of a tube of length L is Tdiff=L

2/D
(see Supporting Information for Glossary). This affords
Tdiff= (A/2pRpore)

2/D, thus establishing that the time delay
required to fill up such nanotubes increases drastically upon
decrease of their radius. This is even more true because dif-
fusion coefficients prevailing in such nanoscopic structures

may have not the same meaning as those encountered in
macroscopic solutions and may then be much smaller than
the common ones. In other words, this leads to a physical in-
trinsic difficulty for a molecule to reach the most inner parts
of the active tubes surface, so that the thinner the tube, the
lesser it is filled within a reasonable time compatible with a
realistic application. Indeed, for a maximum reaction time
Tmax the maximal surface area that may be probed within
one nanotube by the target species is about Amax =

2pRporeACHTUNGTRENNUNG(DTmax)
1/2 so that it decreases with Rpore.

This straight analysis shows that for the physical efficiency
one wants to decrease Tdiff, and therefore keep Rpore large
enough. This is a conflicting requirement compared with the
chemically-based approach, which demands increasing the
surface-to-volume ratio of the porous particles. It is then
clear that the optimization of such inorganic “sponges” for
particular applications has to be accomplished by simultane-
ously considering the role of their surface chemistry and
that related to the physical aspects of their diffusional filling.

Figure 1. Schematic representation of the general model described here.
a) Electron micrographs of spherical sponge particles (left) of a mesopo-
rous silica sample of MCM-41 type;[17a] the delimited zone is enlarged
(right) to emphasize the hexagonal arrangement of nanotubes entrances
at the particle surface (courtesy of A. Walcarius, CNRS, UMR 7564,
Nancy). b) Sketch of one nanotube connected to its diffusion layer ex-
tending into the solution. c) Cross section of b) along the nanotube axis
with indication of the geometrical parameters characterizing the system.
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It is the aim of this work to provide a first general physico-
chemical model allowing the delineation of its main behav-
ioral trends to examine how these dual constraints may be
integrated while designing and optimizing an efficient
system.

Models

Description of a “sponge” particle as a radial array of meso-
or nanotubes : We assume that the “sponge” material con-
sists of a powder of submillimetric particles (Figure 1a)
which are already immersed into a liquid in a batch reac-
tor.[17a] Since we wish to focus on kinetic matters we assume
that at a time taken as the origin (t=0), the composition of
the liquid in the batch reactor is changed abruptly to contain
a total quantity G of a target ion or molecule at concentra-
tion C b

0 which the particles should extract (G=C b
0V

b, V b

being the bulk solution volume). We assume for the simplic-
ity of the model that the selectivity of the sites lining parti-
cle pores towards this target is unique (namely, that no
other competitive extraction may occur) and can be repre-
sented by a classical isotherm of adsorption through the in-
trinsic definition of rate constants of adsorption–desorption
to encompass both their possible physical or chemical
nature (i.e. , involve a transition state or a series of transition
states). Indeed, at a constant temperature and pressure the
distinction between physical adsorption, chemisorption and
covalent binding is irrelevant for the mathematical formula-
tion of our model.

The particles are supposed to be spherical, consisting of a
series of radially densely packed cylindrical nano- or meso-
tubes with thin walls—a situation commonly achieved syn-
thetically with ordered mesoporous silica obtained by the
surfactant–template route (see e.g., Figure 1a and b).[17a] To
account for an overall spherical shape when a particle is
composed of a dense array of nanotubes, one needs to
assume that the tube lengths are not all equal but follow an
adequate distribution governed by the growth of particles
during the synthesis. Let Nmax be the number of tube open-
ings on the outer shell of the particle of radius Rpart ; Nmax ~
4 ACHTUNGTRENNUNG(Rpart/d)

2, where pd2 is the effective surface area required
to host one nanopore in the packed array, that is, d =

gACHTUNGTRENNUNG(Rpore+w), where Rpore is the inner radius of one nanopore,
2w the minimum thickness of the inorganic wall separating
two adjacent nanopores and g is a geometric coefficient
which depends on the crystallographic arrangement of the
array (note that for any array of experimental interest,
namely, squared or hexagonal, g is close to unity so its value
needs not to be explicated at this general stage).

To evaluate the average length, Lav, of the nanotubes one
may rely on a continuous description owing to the very
large number of nanopores within a single particle of any
practical interest (see Figure 1a and b), though the problem
is essentially discontinuous. It is thus shown in Appendix I
that Lav=Rpart/3. Interestingly this number is independent of
the respective size and packing arrangement of the nano-

pores compounding the particle provided only that Rpart@d.
Conversely, the number Dnb of nanotubes having a total
length Lb =bRpart, that is, comprised between (b-Db/2)Rpart

and (b+Db/2)Rpart, depends on Rpart/d and is given by (0�
b�1):

Dnb ¼ 8
�

Rpart

gðRpore þ wÞ

�2
ð1�bÞDb ð1Þ

This shows that if one considers constant increments in
length, namely, Db=Cst, the histogram of the lengths distri-
bution is linear irrespective of the geometrical parameters
of the array, though the number of nanotubes of each di-
mension is a function of these geometrical characteristics.

Because in a real experiment one may have distributions
of particles sizes and for each particle a distribution of nano-
pore sizes (see Appendix I), in the following we will focus
on a single “nanotube element” as depicted in Figure 1c.
Note that such an “element” includes not only the nanotube
itself but also the semi-infinite volume of solution delimited
by the solid angle concentric with the particle and defined
by the overall surface area pg2

ACHTUNGTRENNUNG(Rpore+w)2 defined by one
nanotube on the particle surface (Figure 1b). Treatment of
the activity of a real system consisting of particles containing
nanopores having both different sizes may be performed af-
terwards through statistical averaging considering the exper-
imental Rpore and L distributions (see Appendix I). Yet, to
systematize and validate this approximation, we first need
to examine the physicochemical status of the “external” so-
lution in terms of the spatial repartition of the target species
concentration.

Diffusion–convection control around a “sponge” particle
placed in solution : Spherical active particles of any size de-
velop diffusion layers around them. These depend only on
the duration of the experiment and on the particle size. This
can be rationalized as follows. It is well established that any
array of active material (e.g., of ultramicroelectrodes) of
much smaller size than that of the overall array develops a
series of individual spherical layers centered on each active
nanoelement composing the array.[32] Spontaneous merging
of these individual spherical layers creates an effective diffu-
sion layer that contributes to the macroscopic geometry of
the array.[32]

In other words, when applied to the present case, the col-
lective activity of the Nmax nanopores opening onto a parti-
cle surface generates an overall uniform spherical diffusion
layer wrapped around the particle and concentric with it. By
virtue of the Nernst–Einstein diffusion law this diffusion
layer propagates into the bulk solution at a rate about
(Dbulk/t)

1/2, where t is the time elapsed since the beginning of
the experiment, and Dbulk the diffusion coefficient of the
target species in the solution bulk (note that this is the clas-
sical diffusion coefficient so it may differ from that inside
the nanopores, see above).
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For the sake of reasoning let us assume for now that the
particle is performing in a still bulk solution. When the ex-
perimental time increases, the thickness of the diffusion
layer, ddiff~ (Dbulkt)

1/2, continuously expands up to the point
when it becomes a few times the radius of the particle itself.
When this occurs, full radial diffusion imposes that the solu-
tion surrounding the particle over a domain of thickness of
a few Rpart behaves under steady state spherical diffusion
control. In other words, whenever the solution and particle
are absolutely motionless, ddiff extends continuously with
time but its maximal extension of importance in controlling
the flux to the particle surface is (ddiff)max~Rpart.

In a general experiment the whole solution is stirred vigo-
rously to ensure that each individual particle behaves statis-
tically in an identical fashion. Thus, each particle may be
considered as being surrounded by a thin stagnant solution
layer of thickness dconv (50 mm�dconv�150 mm) for common
liquids depending on local hydrodynamics).[33]

Therefore the effective steady-state diffusion layer that
expands around each particle cannot exceed d =

min ACHTUNGTRENNUNG[(ddiff)max,dconv]. This stagnant layer, in which transport
occurs exclusively by diffusion, is achieved either through
pure diffusion (when (ddiff)max ! dconv) or is limited by con-
vection (when (ddiff)max@dconv). This occurs after a time Dtd =

d2/Dbulk,
[33] which is at most a few tens of seconds for realistic

systems, that is, much smaller than the usual duration of the
particle “filling up” by the target species (see below).
Beyond Dtd the stagnant layer remains stable and the bulk
solution, though being continuously depleted, remains ho-
mogeneous due either to its vigorous stirring or to the
steady state spherical diffusion.

Transport from the bulk solution to a single nanopore en-
trance : The supply of material into the pore is provided by
the steady state diffusion which is quickly reached in the
bulk solution. For this reason each nanopore may be treated
separately (Figure 1c), so that the overall phenomenon for
one particle is obtained by summation over all its individual
pores taking into account the distribution of their lengths in
Equation (1).

This “external” steady state does not imply that diffusion
within a given pore obeys steady state laws, since neither
sphericity nor convection may develop within it, yet this en-
sures that the transfer of matter from the homogeneous
bulk solution to the pore entrance adjusts instantly to any
moderate change imposed by the nanopore time-dependent
activity so that a new steady state is reached instantly by
comparison.[34] This means that at any time of relevance
hereafter, the flux of matter which enters a pore through its
opening is identical to that which is extracted from the bulk
solution by the spherical projection of the circular region
consisting of the nanotube and its wall onto the virtual
sphere of radius (d+Rpart) surrounding the particle (see Fig-
ure 1c). One obtains then the relationship between the aver-
age concentration gradients at the entrance of the pore and
that prevailing at the end of the stagnant layer:

�
@C
@r

�
av

r¼R
þ
part

¼ 1
pR2

pore

�
Z Z

pore entrance

�
@C
@r

�
r¼Rþpart

ds

¼ g2

�
1þ d

Rpart

�2�
1þ w

Rpore

�2� @C
@r

�
r¼Rpartþd

ð2Þ

where the notation r=Rþpart means that the concentration
gradient applying over the elementary surface area, ds, of
the pore entrance is taken immediately outside the pore.
Note that in Equation (2) the superscript “av” means that
upon averaging one considers exclusively the nanopore en-
trance surface area. Indeed, the gradient is null along the
margin of the pore entrance (Figure 1c), as this definition
allows conserving the overall flux and henceforth compen-
sates automatically the possible flux density variations over
the entrance of the pore.

Let us consider now the overall flux of matter over the
whole particle surface. For this we consider that in Equation
(2) the gradients stand for their mean values averaged over
the spherical array of nanopores which delimits the particle
surface. Then the variation of the bulk solution concentra-
tion, Cb, due to the cumulative activity of Npart identical par-
ticles, is given at any time by:

dCb

dt
¼ �4pDbulk

NpartðRpart þ dÞ2
Vb

�
@C
@r

�
r¼Rpartþd

ð3Þ

where Vb is the overall volume of the bulk solution.

On the other hand, owing to the spherical steady state diffu-
sion within the stagnant layer (see Appendix II), one has:

�
@C
@r

�
r¼Rpartþd

¼ 1
ð1þ d=RpartÞ

�
Cb�Cav

R
þ
part

d
ð4Þ

where Cav
Rþpart

is the time-dependent average concentration of
the target species over the pore entrance. In particular, it
follows from Equations (3) and (4) that the differential
equation describing the time variation of the bulk concen-
tration is given by:

dCb

dt
¼ �Dbulk

4pNpartR
2
part

Vb

�
1þ d

Rpart

�
�
Cb�Cav

R
þ
part

d
ð5Þ

Note that 4pNpartR
2
part represents the total active surface area

of an ensemble of fully accessible identical particles. Under
real conditions, particles follow a distribution of size and
some particles may be transiently agglomerated together
thus auto-occulting their diffusion layers. So this term may
have to be replaced by the accessible surface area of the en-
semble of particles at any moment. Yet, we will neglect this
feature hereafter since this may be taken into account if
necessary.
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Equation (5) describes fully the time-dependence of the
bulk concentration of the target species. Yet its solution re-
quires an independent knowledge of Cav

Rþpart
. For this one

needs to solve the diffusion–reaction transport inside the
nanopore, for which it is advisable to define the problem ex-
clusively within the pore. Combination of Equations (2)–(4)
provides the corresponding boundary condition which links
the average flux and average concentration at the entrance
of the pore:

�
@C
@r

�
av

r¼R
þ
part

¼ g2

�
1þ d

Rpart

��
1þ w

Rpore

�2

�
Cb�C

av

R
þ
part

d
ð6Þ

This condition enables the diffusion–reaction kinetics taking
place within the pore to be treated by considering exclusive-
ly the phenomena occurring inside the nanopore, Cb being a
parametric time-dependent variable whose value is regulat-
ed in turn by Equation (5). However, one should note that
the boundary condition (6) relies on average values of flux
and concentration at the pore entrance at any time, and
does not link concentration and flux at any given point of
the pore entrance. Let us now detail the practical use of
such a condition by examining the transport-reaction regime
within the nanopore.

Transport and surface sequestration within a single nano-
pore : One may envision two main limiting kinetic regimes
depending on the inner radius of the pore. When the pore is
truly nanometric, that is, has a radius Rpore comparable to
those of the ion or molecule which it sequestrates, the classi-
cal diffusion cannot be active since there is no “free” solu-
tion for this species to diffuse within. Indeed, under such cir-
cumstances the whole solution is submitted to the influence
of electrical or physical potentials generated by the pore sur-
face structure. Therefore one has to consider the limiting sit-
uation where the pore filling occurs through kinetic ex-
changes between sites through species released partially
within the solution (Figure 2a). Due to its symmetry, the dif-
fusion problem may be treated spatially as a one-dimension-
al (1D) system where the single space coordinate, x, is the
distance from the pore entrance (x=Rpart�r, so that x=0 at
the pore entrance and x=L at the far end of the pore).

The other extreme situation to consider is the converse
one, namely that in which Rpore, though small, remains larger
than any ion and molecule dimension. In this case the trans-
port may be described essentially as involving diffusion
within a continuum, that is, the solution trapped within the
pore, coupled to surface kinetics and site-hopping at the sur-
face of the nanotube (Figure 2a). Due to its symmetry, the
system may be treated spatially as a 2D system where the
two space coordinates are the distance from the pore en-
trance along its axis and the radial distance from the nano-
tube axis.

Yet, before considering this most general case let us ex-
amine the 1D-limiting case since this will provide a key to
solve efficiently the most general situation. Furthermore,
owing to usual geometric requirements in efficient inorganic

“sponges”, this is presumably the case which prevails under
most real conditions of interest.

Formulation of 1D-diffusion-reaction within a nanopore of
molecular size : We consider here a thin nanopore in which
the space available to diffusion is at most a few ion or mole-
cule diameters (Figure 2a). Under such conditions is it im-
possible to define a classical concentration dependence as a
function of the radial coordinate. However, one may define
a statistically averaged concentration Cav(x) of the target
species. This concentration is defined as the infinitesimal
number of moles, dn, of the unbound species (namely, not
linked to any site) present in the infinitesimal volume,
pR2

poredx, of an infinitesimal nanopore slice of thickness dx :
C(x)= (dn/dx)/(pR2

pore). The infinitesimal pore surface area
of this slice is dS=2pRporedx so that the number of sites (oc-
cupied or not) present in the same slice is dnsites=

2pRporeGsitedx, where Gsite is the surface concentration of
active sites decorating the nanopore wall. Note that we
define here by Gsite merely the maximum surface concentra-
tion of the site-target species coverage onto the nanopore
walls. In other words, the maximum number (namely at full
coverage, that is, after an infinite time, and for a species
giving rise to an infinite adsorption equilibrium constant) of
moles of target species which may be sequestrated by a
nanopore is 2pRporeLGsite. Let q(x) be the local fraction of
occupied sites and kads (in m

�1 s�1) and kdes (in s�1) be the cor-
responding rate constants of physical or chemical adsorption
and desorption (namely, kdes=Kdeskads, where Kdes is the de-
sorption equilibrium constant, in m) of the target species
onto or from one site. Note that due to the fact that mole-

Figure 2. Schematic representation of the two limiting cases considered
here. a) Molecular-size nanopore. b) Thin nanopore. See text.
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cules or ions may travel laterally across the nanopore only
along distances much smaller than several times their size,
the classical Schmoluchowki description of a reaction does
not apply here. Also, the nanopore wall chemical composi-
tion may generate specific electrostatic potential akin to
electric double layers. Therefore, it must be stressed that the
physicochemical meaning of the rate and equilibrium con-
stants introduced here, henceforth their values, may substan-
tially differ from those for a classical macroscopic case.

The variation of average concentration within a nanopore
slice due to the chemical exchange with the surface during
any infinitesimal time duration @t at any distance x inside
the nanopore is:

�
@Cav

@t

�
surf
¼ � 2Gsiteskads

Rpore
½ð1�qÞCav�qKdes	 ð7Þ

Simultaneously, the unbound target species may diffuse in
the solution, so that the second FickMs law equivalent de-
scribing the overall behavior of Cav(x,t) is:

@Cav

@t
¼ Dpore

@2Cav

@x2
� 2Gsiteskads

Rpore
½ð1�qÞCav�qKdes	 ð8Þ

Note that Dpore, which may drastically differ from Dbulk, is
formally equivalent to a diffusion coefficient though it has
not a classical Nernst–Einstein meaning but a statistical one
as in electron-hopping equivalent diffusion.

In the above expression q is time and space dependent
through its dependence on Cav(x,t):

@q

@t
¼ kads½ð1�qÞCav�qKdes	 ð9Þ

The system of Equations (8) and (9) defines fully the diffu-
sion-reaction problem within the pore. To be solved, it
needs to be associated with a set of initial conditions (t=0):

0 < x � L : Cavðx,0Þ ¼ 0, qðx,0Þ ¼ 0 ð10aÞ

x ¼ 0 : Cavð0,0Þ ¼ Cb
0, qð0,0Þ ¼ 0 ð10bÞ

and boundary conditions (t>0):

x=0 (entrance of pore):

�
@Cav

@x

�
x¼0
¼ �g2Dbulk

Dpore

�
1þ d

Rpart

��
1þ w

Rpore

�2
�

CbðtÞ�Cav
x¼0ðtÞ

d

ð11aÞ

x=L (bottom of pore):

�
@Cav

@x

�
x¼L
¼ 0 ð11bÞ

Note that Equation (11a) follows readily from Equation (6)
upon considering the boundary condition inside the pore.
This requires a renormalization of the flux to account for
the variation of diffusion coefficients on each side of the in-
terface at x=0. Equation (11b) expresses simply that the
bottom of the nanopore is impermeable to the target spe-
cies.

Whenever this is of importance, the set of Equations (8)–
(11) must be coupled to the rewritten form of Equation (5)
to account for the time dependence of the bulk concentra-
tion of the target species, namely:

dCb

dt
¼ �Dbulk

4pNpartR
2
part

Vb

�
1þ d

Rpart

�
� C

bðtÞ�Cav
x¼0ðtÞ

d
ð12Þ

2D Diffusion-reaction within a single nanopore with thin
wall (Rpore@ w): When the radius of the pore is much larger
than molecular or ionic dimensions the classical 2D-diffu-
sion may be used for the description of transport within the
solution which fills the nanotube, namely, for 0�x�L and
0�1�Rpore, where 1 is the radial coordinate measured from
the cylindrical nanopore axis, associated to a classical mac-
roscopic formulation of the adsorption–desorption kinetics.
Let us denote by C(x,1) the concentration at any point of
the 2D cross-section of the nanopore along its axis.

By the definition of this case, the physicochemical proper-
ties of the thin but nevertheless macroscopic 2D-solution
inside the pore are considered akin to those of the bulk.
Thus, the diffusion coefficient of the target species is equal
to Dbulk and a classical diffusion law applies. This affords in
cylindrical coordinates:

@C
@t
¼ Dbulk

�
@2C
@x2
þ @

2C
@12 þ

1
1

@C
@1

�
ð13Þ

Equation (13) fully defines the problem in the 2D-diffusion
zone of the nanopore, but it needs to be coupled to that de-
fining the spatial and temporal dependence of q. This is
written as:

@q

@t
¼ Dsite hopping

@2q

@x2
þ kads½ð1�qÞCðx,1Þ�qKdes	 ð14Þ

to account simultaneously for the adsorption–desorption ki-
netics and the possibility of “site hopping” interchange
through microscopic diffusion as sketched in Figure 2b. Note
that Dsite hopping is not a classical diffusion coefficient but a pa-
rameter equivalent to a diffusion coefficient, which com-
bines microscopic rate constants and diffusion. This formula-
tion compares to that introduced earlier for “diffusion by
electron hopping” in redox polymers or redox dendrimers.

The system of Equations (13) and (14) needs to be associ-
ated with the following initial conditions (t=0):

0 < x � L, 0 � 1 � Rpore : Cðx,1,0Þ ¼ 0, qðx,0Þ ¼ 0 ð15aÞ

x ¼ 0, 0 � 1 � Rpore : Cð0,1,0Þ ¼ Cb
0, qð0,0Þ ¼ 0 ð15bÞ
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and boundary conditions (t>0):

0 � x � L, 1 ¼ 0 : ð@C=@1Þ1¼0 ¼ 0 ð16aÞ

x ¼ L, 0 � 1 � Rpore : ð@C=@xÞx¼L ¼ 0 ð16bÞ

x ¼ L, 1 ¼ Rpore : ð@q=@xÞx¼L ¼ 0 ð16cÞ

0 � x � L, 1 ¼ Rpore :�
@C
@1

�
1¼Rpore

¼ �Gsiteskads
Dbulk

½ð1�qÞC�qKdes	
ð16dÞ

x ¼ 0 : ð@q=@xÞx¼0 ¼ 0 ð16eÞ

where it must be stressed that although we use the same no-
tations here, in Equation (16d), kads (in m

�1 s�1) and Kdes (in
m) meaning and values are now considered with their usual
macroscopic sense. In other words, both parameters include
all the microscopic transport along the 1 direction and sur-
face kinetic phenomena which occur within a thin kinetic
layer adjacent to the nanopore wall (see Figure 2b). The
molecule- or ion-sized thickness, m !Rpore, of this kinetic
layer is defined by the fact that at its end (namely, at 1=

(Rpore�m)~Rpore) the physicochemical properties of the solu-
tion contained by the nanopore reach their usual macro-
scopic values.

To complete this formulation, Equations (13)–(16) must
be amended by the relationship required to couple the two
kinetic regimes taking place in the nanopore to that which
prevails in the free solution. Formally, this is given by the
set of Equations (17) and (18) which are identical to Equa-
tions (11a) and (12) after their appropriate rewriting to take
into account the notations used in this section:

h
�
@C
@x

�
x¼0
i ¼ �g2 1

d

�
1þ d

Rpart

��
1þ w

Rpore

�2

� ½CbðtÞ�hCx¼0i	

ð17Þ

dCb

dt
¼ �Dbulk

4pNpartR
2
part

dVb

�
1þ d

Rpart

�
� ½Cb�hCx¼0i	 ð18Þ

However, these conditions cannot be used without care.
Indeed, they involve two terms,hCx=0i and h

�
@C
@x

�
x=0i which

are averaged quantities over the pore entrance surface. So,
these equations may be formally applied at a given 1 value
in the 2D-domain fraction of the nanopore only when the
concentration dependence on 1 at x=0 may be neglected.
Under our conditions this may be true only when the nano-
tube wall, w, is extremely thin compared with Rpore, because
then the bulk quasi-steady state diffusion layer surrounding
the particle penetrates almost unaffected (namely, except
for the kinetics occurring at the nanopore wall) inside the
nanopore. This simplification is no longer correct when w is
comparable to or even exceeds Rpore, because of the strong
inhomogeneities of fluxes and concentrations at the pore en-
trance. When w is comparable to or even exceeds Rpore one

needs to address precisely the diffusional transport problem
across the region where the solutions in the diffusion layer
and that in the nanopore interact. We therefore need to ex-
amine this special situation in a separate section.

Note, however, that this difficulty cancels by definition
when the pore radius becomes comparable to molecular and
ionic sizes whatever the value of w/Rpore. Indeed, the concen-
trations and flux in the liquid nanopore may then only be
considered as statistically averaged values over the infinitely
small action of the pore. So in this situation, whenever
steady state conditions apply in the solution surrounding the
particle as we consider here, Equations (11a) and (12) may
be readily applied at x=0. This is why the case of large
walls has not been examined in this Section.

Specificities of 2D-diffusion-reaction for a thick-walled
nanopore : As explained above, the geometrical discontinui-
ty involved when the nanopore is not of molecular or ionic
size and has simultaneously a thick wall creates extreme
flux inhomogeneities in the close vicinity of the pore en-
trance (namely, over distances that are comparable to w).
On a strict diffusional basis, this problem is indeed akin to
that treated previously for recessed electrodes. However, it
remains nevertheless original in the sense that the boundary
condition created by the presence of a chemically active
pore wall differs drastically from that describing an inert
pore wall with a recessed electrode at the bottom of the
pore. This will be treated elsewhere since it does not affect
the diffusional problem per se.

We have shown in our previous work on recessed electro-
des[35] that the large flux variations introduced by the geo-
metrical discontinuities at the pore entrance are filtered
readily by diffusion over a distance of a few w along the
pore axis. Thus, one needs only to consider a “buffer”
domain located around the pore entrance and extending
over a few w within the free solution or inside the pore. In-
terestingly, when w/Rpore!0, the size of this domain vanish-
es; the “thin-wall” system may then be modeled accurately
within the framework elaborated in the previous section.

We have shown in our previous treatment of recessed disk
electrode arrays[35] that formulating the problem with con-
formal transformations was particularly adequate to sup-
press the important difficulties introduced by the discontinu-
ities and boundary angles created by the presence of a thick
wall. The method consists of transforming the irregular poly-
gon bounding the 2D space in which diffusion occurs into a
rectangular 2D space (see Figure 3a). This is performed in
two steps, each one involving a specific Schwartz–Christoffel
transformation.[32b,35,36] The first one converts the complex
variable z=1+ ir’ (i being the imaginary unit number, i2=

�1, and r’ is the coordinate co-directional with r but cen-
tered at r=Rpart�L) into the intermediate one z according
to Equation (19):[35]

z ¼ f ðzÞ ¼ zz

Zz

0

ðz�z2Þ1=2
z1=2ðz�z1Þ1=2ðz�z3Þ1�a=p

dz ð19Þ
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where the variables z1, z2 and z3 are the images of the poles
in the original space labeled x0, x1, x2 and x3 which define
the complex positions of the polygon summits in real space
(Figure 3a). The angle a gives the average direction of the
circular arc describing the particle boundary with the nano-
pore axis, so that for the experimental cases of interest
which involve a dense packing of nanopores a~p/2. Similar-
ly, zz is a scaling complex factor which needs not to be expli-
cated at this stage. The corresponding z space is a half-plane
(Figure 3b). This is then transformed onto the final closed
space W= z+ ih according to Equation (20):

W ¼ 2
p

Wz arcsinð
ffiffiffi
z

p
Þ ð20Þ

where again Wz is an adequate complex scaling factor. As

evidenced in Figure 3c, the W space is a closed rectangular
box. The interest of the overall transformation z!W is read-
ily apparent through the examination of Figure 3d which
represents the result in the real space z of an even rectangu-
lar grid meshing of the W space after its back-transformation
W!z.

This observation is crucial for our purpose here. We have
indeed shown previously[35] that the pattern generated by
the sequence of Equations (19) and (20) as exemplified in
Figure 3d closely conforms with the real pattern produced
by the steady state isoconcentration curves and flux lines. In
other words, this shows that except when the sites are ex-
tremely reactive (and then only over the very short initial
time period required for the active solution to penetrate
over a distance of a few w within the pore) the flux is con-
served across this buffer zone.

Thus, provided that the pore length, L, exceeds by far its
wall thickness, one may neglect the influence of the distor-
tion caused by the presence of a thick wall, so that the de-
scriptions given in the previous section may be used directly.
The relative systematic error thus introduced onto the final
quantity of sequestrated target is at most of the order of
w/L and concerns only extreme situations where the adsorp-
tion/desorption kinetics are faster than diffusion. Since in
any real situation of interest one has L~Rpart@ (Rpore+w)
due to the dense packing of nanopores in the particle, it fol-
lows that the relative error of the quantities and fluxes of se-
questrated species is negligible for any real system having
an applicative interest.

Owing to our interest here (see Figure 1), this “short pore
with thick wall” configuration may then be overlooked.
However, it will be fully investigated elsewhere, since it
presents several properties of importance for other kinds of
applications especially for electroanalysis.

Summary of the models for each limiting case of practical
interest : The different analyses presented above delineate
that under any case of real practical importance for the use
of nanoporous particles as chemical “sponges” or reactors,
the problem of transport and sequestration needs to be
treated only within a single nanopore. The outside condi-
tions imposed by the external solution through its steady
state layer at the surface of the particle may be replaced by
analytical boundaries which govern the relationship between
concentration and flux of the target species at the very en-
trance of the pore.

Diffusion–adsorption within the pore may be treated as a
one-dimensional problem when the pore radius is of molec-
ular or ionic size, a situation which simplifies greatly the nu-
merical simulations. However, then the system properties
depend on physicochemical parameters (e.g., diffusion coef-
ficient, kinetic rate constants) whose values do not compare
at all with usual macroscopic ones. Their values must either
be determined independently by molecular Brownian dy-
namics or be considered as adjustable parameters when fit-
ting simulations to experimental data.

Figure 3. Mathematical treatment by conformal mapping of diffusion
within nanopores (see Figure 1c) required when the pore wall thickness,
2w, is at least of comparable size to the inner diameter of the nanopore
2Rpore . a) Half-cross-section of the nanopore and its adjacent diffusion
layer (see Figure 1b and c) in the real space. b) Effect of the transform
z!x onto a) to generate the half-plane geometry in the x space. c) Trans-
form of b) trough the application of x!w, to produce the closed box
equivalent of a) in the W space. d) Back-transformation in the real space
a) of a uniform rectangular mesh drawn in the closed box c); note that
the kinked area near the pore entrance is automatically defined with
high precision.
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Conversely, when the nanopores, though still nanoscopic,
have larger radii, a macroscopic 2D cylindrical formulation
may be used. However, when the margin surrounding each
pore opening at the particle surface has the size comparable
with or larger than Rpore, the system cannot be readily un-
coupled by considering independently the nanopore and the
external solution as may be performed in the treatment of
the 1D model as the small-walled 2D model. A proper anal-
ysis of transport in this zone was required for connecting the
very pore inside to the main part of the diffusion layer
around the particle. This showed that a connecting buffer
zone extends into the pore and into the external solution
only over a few times the size, 2w, of the inorganic wall that
separates two adjacent pores. It follows that, though it may
be important for other situations, this cumbersome situation
needs not to be considered for any realistic application of
such particles as inorganic “sponges” or reactors where L@

w+Rpore.

Experimental observables : The particles considered in this
study are used experimentally for sequestrating a target spe-
cies from a dilute bulk solution of this species. The particles
action will stop when the species coordinated by the active
nanopores sites is at equilibrium with the solution filling the
nanopores. Note that when the system has reached equilibri-
um, the target species concentration within the solution fill-
ing a nanopore is constant and identical to that of the bulk
solution at the end of process. This only ensures the suppres-
sion of all chemical and transport fluxes which is the neces-
sary criterion to define the dynamic equilibrium of the
system. Let Cb

1 be this common concentration.
Irrespectively of the nanopore size, the sites coverage q1

at equilibrium is:

q1 ¼ ½1þ ðKdes=C
b
1Þ	�1 ð21Þ

so that the overall quantity of species sequestrated by one
pore reactive sites is:

Qwall
1 ¼ 2pRporeLGsiteq1 ¼ 2pRporeLGsite=½1þ ðKdes=C

b
1Þ	

ð22Þ

Since the amount of target species trapped into the solution
filling the nanopore is:

Qsoln
1 ¼ pR2

poreLC
b
1 ð23Þ

the overall amount of target species sequestrated by a single
nanopore is:

Q1 ¼ Qwall
1 þQsoln

1 ¼ pR2
poreLC

b
1

�
1þ 2Gsite

RporeðKdes þ Cb
1Þ

�

ð24Þ

Noting that the volume and the surface area of a nanopore
are proportional to its length L, and taking advantage of

Equations (A1) and (A3) from Appendix I, one obtains for
Npart identical particles:

Qtot
1 ¼ Npart

�
4p

3
R3

part

�
Rpore

d

�2��
1þ 2Gsite

RporeðKdes þ Cb
1Þ

�
Cb
1

ð25Þ

On the other hand, the bulk solution has been depleted so
that, owing to matter conservation, one obtains the equation
giving the value of Cb

1 :

Cb
1 ¼ Cb

0=

�
1þ

4pRpartNpart

3Vb

�
Rpore

d

�2�
1þ 2Gsite

RporeðKdes þ Cb
1Þ

�	

ð26Þ

At any time before the final equilibrium is reached, the
overall quantity of the target species sequestrated within the
particles is equal to that missing from the solution:

QtotðtÞ ¼ ðCb
0�CbÞVb ð27Þ

where Cb(t) is given by the solution of the equations defin-
ing the 1D or 2D models.

It follows that:

Qtot
1 ¼ ðCb

0�Cb
1ÞVb ð28Þ

so that:

f ðtÞ ¼ Q
totðtÞ
Qtot
1
¼ 1�ðCb=Cb

0Þ
1�ðCb

1=C
b
0Þ

ð29Þ

defines the fraction of target species sequestrated at any
time, Cb

1 being given by Equation (26).

Analysis of Kinetic Behavior

Dimensionless formulations : The above analysis has provid-
ed evidence that the kinetic properties of the systems under
investigation depend on several independent parameters.
However, the formulations used for the 1D-model or the
2D-model evidence that these parameters play cooperative
or antagonist roles in controlling the system behavior, so
that a dimensionless formulation presents the advantage of
integrating these cumulative effects into a single effective
parameter. Actually, this is also important to afford a larger
generality of predictions based on simulations. For this
reason let us introduce the following dimensionless varia-
bles:

concentrations : a ¼ C=Cb
0 or C

av=Cb
0, c ¼ Cb=Cb

0 ð30aÞ

surface coverage : gsite ¼ Gsite=ðLCb
0Þ ð30bÞ
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time : t ¼ Dbulkt=L
2 ð30cÞ

diffusion coefficients : h ¼ Dpore=Dbulk, hsh ¼ Dsite hopping=Dbulk

ð30dÞ

shape parameters : s ¼
�
1þ d

Rpart

�
, y ¼

�
1þ w

Rpore

�

ð30eÞ

lengths : y ¼ x=L, c ¼ 1=Rpore, e ¼ ðL=RporeÞ2 ð30fÞ

volume : u ¼
4pR3

partNpart

3Vb

�
Rpore

d

�2

ð30gÞ

adsorption rate : l0 ¼ kadsL2Cb
0=Dbulk ð30hÞ

desorption equilibrium : k ¼ Kdes=C
b
0 ð30iÞ

time constants : f ¼ g2sy2ðL=dÞ, # ¼ 4pNpartR
2
partsL

2=Vbd

ð30jÞ

pore storage parameter : X0 ¼
ð2pRporeLÞGsite

ðpR2
poreLÞCb

0

¼ 2
Gsite

RporeC
b
0

ð30kÞ

where X0, the pore storage parameter, compares the maxi-
mum quantity of species storable by the nanopore wall sites,
namely, Qmax

ads species = (2pRporeL)Gsite, to the quantity stored by
the solution contained by the nanopore upon considering
the initial solution concentration, Qmax

soln species= (pR2
poreL)C

b
0.

Note that at infinite time, the pore-contained solution has a

concentration Cb
1=c1C

b
0, so that X1 = X0

�
Cb

0

Cb
1

�
=

X0

c1
repre-

sents the storage parameter after an infinite time.
This set of dimensionless parameters allows recasting the

set of equations to afford the dimensionless time-dependent
fraction of the sequestrated target species. For example,
Equation (29) becomes:

f ðtÞ ¼ Q
totðtÞ
Qtot
1
¼ 1�cðtÞ

1�c1
ð31Þ

where c1 is solution of the dimensionless formulation of
Equation (26):

c1 ¼
1�kð1þ uÞ�2ugsite

ffiffiffi
e
p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1�kð1þ uÞ�2ugsite

ffiffiffi
e
p
Þ2þ 4kð1þ uÞ

p
2ð1þ uÞ

ð32Þ

and c(t) is obtained through solving the equations describ-
ing the system in each of its limiting cases of experimental
interest.

Dimensionless formulation for the 1D limiting problem : In-
troducing the dimensionless variables defined in Equations
(30a)–(30k), the 1D-model mathematical formulation becomes:

@a
@t
¼ h

@2a
@y2
�ðl0X0Þ½ð1�qÞa�qk	 ð33Þ

@q

@t
¼ l0½ð1�qÞa�qk	 ð34Þ

and is associated with the following set of initial conditions
(t=0):

0 < y � 1 : a ¼ 0, q ¼ 0 ð35aÞ

y ¼ 0 : a ¼ Cb
0, q ¼ 0 ð35bÞ

and boundary conditions t>0:

y ¼ 0 :

�
@a
@y

�
y¼0
¼ �f

h
ðc�ay¼0Þ ð36aÞ

y ¼ 1 :

�
@a
@y

�
y¼1
¼ 0 ð36bÞ

where the time variations of the bulk solution concentration
in Equation (12) are related to that at the pore entrance by:

dc
dt
¼ �#ðc�ay¼0Þ ð37Þ

Dimensionless formulation for the 2D limiting problem :
The mathematical equations which describe the 2D-phe-
nomena occurring inside the nanopore core and those per-
taining to its wall surface become in dimensionless formula-
tions:

@a
@t
¼ @

2a
@y2
þ e

�
@2a
@c2 þ

1
c

@a
@c

�
ð38Þ

@q

@t
¼ hsh

@2q

@y2
þ l0½ð1�qÞa�qk	 ð39Þ

and are associated with the following initial conditions (t=

0):

0 < y � 1, 0 � c � 1 : aðy,c,0Þ ¼ 0, qðy,0Þ ¼ 0 ð40aÞ

y ¼ 0, 0 � c � 1 : að0,c,0Þ ¼ 1, qð0,0Þ ¼ 0 ð40bÞ

and boundary conditions (t>0):

0 � y < 1, c ¼ 0 : ð@a=@cÞc¼0 ¼ 0 ð41aÞ

y ¼ 1, 0 � c � 1 : ð@a=@yÞy¼1 ¼ 0 ð41bÞ

y ¼ 1, c ¼ 1 : ð@q=@yÞy¼1 ¼ 0 ð41cÞ

0 � y < 1, c ¼ 1 :

�
@a
@c

�
c¼1
¼ � l0X0

2e
½ð1�qÞa�qk	 ð41dÞ
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y ¼ 0, 0 � c � 1 :

�
@a
@y

�
y¼0
¼ �f

h
ðc�ay¼0Þ ð41eÞ

y ¼ 0, c ¼ 1 : ð@q=@yÞy¼0 ¼ 0 ð41fÞ

As for the 1D problem, the time variations of the bulk con-
centration need to be taken into account. It must be realized
that a may now vary along the c coordinate at y=0. Yet,
within the framework of our 2D model (i.e. , w !Rpore), such
variations are necessarily slight and are readily filtered by
diffusion into the nanopore over a distance yw~w/L!1.
Therefore, one is allowed to approximate this boundary con-
dition upon considering the mean value of a over the sur-
face of the nanopore entrance, namely:

dc
dt
¼ �#ðc�haiy¼0Þ ¼ �#

�
c�2

Z1

0

ay¼0cdc

�
ð42Þ

Limiting kinetic behaviors : In this section we take advant-
age of the above dimensionless formulations which allow
comparison of the effects of several independent parame-
ters.

For realistic systems one expects the storage parameter X0

to be extremely large. Indeed, should this parameter be
small or not large, the maximum quantity of target species
stored in the particle would be comparable to that corre-
sponding to the particle volume filled by the initial solution.
In other words, when X0 is not extremely large the particle
action would be akin to emptying the solution by scooping
it out physically, a situation which presents no operational
gain at all. For this reason, in the following we consider only
the realistic case where X0@1 (note that since the bulk solu-
tion concentration necessarily decreases with time, one has
then at any instant Xt =

X0

cb
�X0 @ 1, so that the consider-

ation on X applies at any time).
Similarly, one expects that any adequate site lining of the

nanopore walls will have a very low desorption equilibrium
constant, that is, k !1, though this does not necessarily
imply that the irreversible adsorption is fast, namely, that l0

is large. Indeed, even when adsorption is efficient and rapid
l0 may be small since it compares the life-times of adsorp-
tion (namely, ca. t1/2

adsffi1/(kadsCb
0)) to that of diffusion

(namely, ca. Tdiff=L
2/Dbulk), l0=Tdiff/t

ads
1=2.

One-dimensional problem : The system is essentially con-
trolled by Equations (33) and (34). Equation (34) shows that
an efficient system requires that either l0 or l0X0/h are large
for the storage by the wall sites to be non-limiting. Since h

is expected to be at most equal to unity [see Eq. (30d)],

(X0/h)@1.

Behavior I : When l0 is large, both parameters are large so
that the adsorption equilibrium is achieved at any place and
each instant, namely, q=a/(a+k)ffi1. Evidently, this condi-
tion cannot hold when a!k or when a<k ; yet, this situation

happens only when a!0 and q!0, so that for our purpose
here it can be neglected since it corresponds to a negligible
quantity of the target species present either on the wall or
in the adjacent solution. To delineate the main behaviors of
the system, we will thus consider in the following that pro-
vided that l0 is large, qffi1 is valid everywhere where a¼6 0.
Thus, Equation (34) is no more required and Equation (33)
becomes:

@a
@t
¼ h

@2a
@y2

ð43Þ

which establishes that the target species sequestration within
the nanopore is controlled by its diffusion only. We have as-
sumed that steady state diffusion was achieved in the parti-
cle diffusion layer. However, this may not be the case inside
the nanopore even if by definition (ddiff)max~Rpart/L.
Indeed, since h may be small, on the one hand, the diffusion
wave propagates slower inside the nanopore than in the free
solution, and, on the other hand, even when hffi1 (see below
for the 2D problem), forced convection does not contribute
to the transport inside the nanopore. Therefore, it is expect-
ed that in realistic situations, the diffusional wave has a
time-dependent behavior up to when the end of the nano-
pore is reached, though diffusion is under quasi-steady state
in the diffusion layer surrounding the particle holding the
pore.

Conversely, when l0 is small, Equation (34) shows that
the adsorption kinetics lags behind the diffusional species
penetration inside the nanopore.

Behavior II : When l0@ (h/X0) the kinetic term in Equation
(33) is very large whenever (1�q)a>qk. This means that
each species penetrating inside the nanopore is ultimately
sequestrated by its reaction with any still active site. Howev-
er, where the sites have reached equilibrium, that is, where
(1�q)a= qk, the kinetic term vanishes whatever the values
of l0X0/h. Hence, a may proceed diffusionally inside the
pore along the zones where the adsorption equilibrium has
been reached, namely, where (1�q)a = qk but its progres-
sion is stopped as soon as this is not the case and waits up
to the moment when saturation is reached due to nearly
constant diffusional supply of matter. Only then the kinetic
term in Equation (33) may vanish again and the target spe-
cies is allowed to proceed inside the pore. At a given time,
let us consider that for 0�y<yt, the sites are already fully
covered (namely, q(y)=a/(a+k)ffi1). In other words, the
concentration profile of a over the range 0<y�yt is linear
and maintains a quasi-steady state flux which counterbalan-
ces the consumption of a at yt. For yt<y�1, the solution is
empty (namely, a(y)=0) and the wall sites unoccupied
(namely, q(y)=0). Around yt, since (@a/@t) cannot be infin-
ite, the large magnitude of the kinetic term is necessarily
compensated by a large curvature, namely, a large j@2a/@y2 j
value, of the concentration profile. Thus the transition is
given by:
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@2a
@y2
ffi ðl0X0=hÞð1�qÞa ð44Þ

By definition of yt, q !1 for
yt<y�1. So, a good asymptotic
approximation of the thickness
da of the kinetic layer in which
the concentration drop of a
occurs is:

da � ðl0X0=hÞ�1=2 ! 0 ð45Þ

and tends towards zero since
l0@ (h/X0).

Behavior III : When l0 ! (h/X0)
the kinetic term in Equa-
tion (33) is also negligible,
showing that initially the nano-
pore fills completely by diffu-
sion [namely, Eq. (43) still ap-
plies though for different rea-
sons than before]. Thus, during
the first stage, the solution
inside the pore diffusionally
equilibrates with that of the
bulk solution. In the second
and slower stage, the concentra-
tion filling the nanopore inside
solution remains equilibrated
with that of the bulk at any
time, and adsorption proceeds
slowly. Thus, the system be-
haves as if the entire pore wall
was fully accessible to the ho-
mogeneous bulk solution. So
during this second stage the target species sequestration ki-
netics is commanded only by Equation (34) which simplifies
into:

@q

@t
� l0ð1�qÞc ð46Þ

where c is the dimensionless bulk concentration.
The three different kinetic behaviors I–III described

above may be conveniently summarized by a kinetic zone
diagram upon representing their locations as a function of
the values of l0 and (X0/h). Note that here we have not con-
sidered the situation where (X0/h)�1 since by hypothesis
the range of this parameter ought to be limited to its large
values. Such diagram is shown in Figure 4a. The qualitative
time variations of a/c, q and f(t) in each kinetic zone I–III
are represented schematically in Figure 4c assuming that c=

1 and k�0 (see text and Appendix III).

Two-dimensional problem : As for the 1D situation, we wish
to delineate the main kinetic behaviors experienced by the

system. For this reason we will neglect here the term hsh

since it can be assumed that when the adsorption sites are
rigidly anchored to the chemical structure of the nanopore
walls any direct exchange between them is negligible com-
pared to the exchange which proceeds through hopping via
the solution. Thus, Equation (39) becomes identical to
Equation (34), though, the situation is not exactly similar to
that identified for the 1D problem because now this is the
radial diffusion [namely, the term factor of e in Equation
(38) relayed by the coupling Equation (41d)] which com-
mands the supply of species to the walls. Conversely, as for
the 1D problem, the axial diffusion term in Equation (38)
(namely, @2a/@y2) commands the propagation of the target
species within the nanopore.

Though this is not a situation of interest here, the case of
wide and short pores (i.e. , e�1) corresponds to a fast diffu-
sion of the species inside the nanopore along its axis, so that
after a few L2/Dbulk seconds the nanopore is filled with the
target species almost all over its volume except maybe near
its wall. Then, adsorption proceeds as described above in
the kinetic zone III for the 1D problem (i.e. , when l0 !1

Figure 4. Kinetic zone diagrams illustrating the different behaviors experienced by the system as a function of
the main dimensionless parameters which characterize its dynamics: l0=kadsL

2Cb
0/Dbulk, the adsorption kinetic

rate, X0= [(2pRporeL)Gsite]/[(pR
2
poreL)C

b
0], the storage parameter, as well as of h=Dpore/Dbulk and e= (L/Rpore)

2.
a) 1D problem. b) 2D problem. The qualitative spatial variations of a/a(0), q and time variations of f(t) in
each kinetic zone I–III/IV are similar irrespective of the 1D or 2D problem and are represented schematically
in c) assuming that c=1 and kffi0 (see main text and Appendix III). Note that for zone II, in representing f(t)
the relative proportion between f1

(1st) and f1
(2nd) is arbitrary to stress the two-stage behavior. Zone IV exists

only for the 2D problem; since this behavior is qualitatively akin to that represented for zone III, it is not par-
ticularized in c).
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and l0X0/h !1). Due to its peculiarity this situation is not
considered anymore in the following and we focus on the
system when e @1, which corresponds to long and thin nano-
pores, that is, onto the case matching most experimental re-
alistic systems.

Under such conditions the radial diffusion term in Equa-
tion (38) necessarily dominates over the axial diffusion term
(namely, @2a/@y2) as soon as a radial gradient may build up.
Except for the region near the very mouth of the nanopore
(see the above discussion in the section on Specificities of
2D-diffusion reaction for a thick-walled nanopore), the only
way for a radial gradient component to be forced upon the
system is through Condition (41d). This applies at c=1 and
rewrites as:

0 � y < 1, c ¼ 1 :

�
@a
@c

�
c¼1
¼ � l0X0

2e
ð1�qÞa ð47Þ

for k!0. Both terms e and X0 are large for the situations of
interest herein, so that in contrast to the always large term
X0/h considered above in the 1D problem, the term X0/e may
take any value depending on the exact system at hand. It
follows that l0X0/e may achieve also any possible value.

When l0X0/e !1, except maybe at the very pore entrance,
a situation we neglect here, (@a/@c)c=1 is necessarily negligi-
ble because the product (1�q)a is at most equal to unity.
Whatever is the value of l0, under such conditions the diffu-
sional radial gradient is not able to compete with the axial
one. This expresses that the toll imposed by the adsorption
kinetics cannot be transferred with significant strength
across the nanopore core whatever the value of l0. It en-
sures that the target species diffuses linearly along the pore
axis. So the situation is akin to that considered above in ki-
netic zone III of the 1D problem (i.e. , when l0 and l0X0/h
are both small). During the rapid first stage, the nanopore
fills completely through nearly linear diffusion so that the
target species concentration becomes equilibrated through-
out with that at the pore entrance. In the second and slower
stage, kinetics may operate and impose a radial gradient on
to the solution whose composition remains independent of
y. The situation is then akin to a slow charge transfer case in
electrochemistry at a tubular electrode placed into a homo-
geneous solution [Eq. (46)]. Two main limits are thus found.
One when the radial transport to the nanopore wall is fast,
namely, the system depends only on the slow heterogeneous
kinetics and is governed by the magnitude of l0 so that the
situation is akin to behavior III met in the 1D problem. In
the opposite situation, the adsorption kinetics is faster than
the diffusional supply and depletes continuously the target
species at the surface.

Then the system kinetics is akin to a Nernstian case, being
governed by the radial transport which in turn is imposed by
the gradient at c=1, namely, by l0X0/e in Equation (47); this
defines a new situation, noted behavior IV (this could not
be met in the 1D problem because the radial diffusion was
infinite by definition of the 1D model). Comparison be-
tween Equations (46) and (47) shows that the relative mag-

nitude of both effects is governed by the ratio: (l0X0/e)/l0=

X0/e, behavior III being encountered when X0/e @1, while
behavior IV is observed when X0/e !1. Noting that these
two zones: zone III and zone IV, exist only when l0X0/e !1,
it follows that zone III is defined by the area comprised
below the segment l0X0/e=1 and above X0/e=1, that is,
exists only when l0 !1. Zone IV corresponds to the comple-
mentary domain located below the axis l0X0/e=1 and may
be observed whatever the value of l0.

When l0X0/e@1, (@a/@c)c=1 in Equation (47) is necessarily
large unless the adsorption kinetics are sufficiently fast to
reach equilibrium while the species diffuses; indeed, then
[(1�q)a�qk]=0, that is, q=1 when k !1. Occurrence of
the latter condition requires that l0 is large. Then the situa-
tion is identical to that described above for the 1D problem
(kinetic zone I). Conversely, when l0 !1, the kinetics are
slow but nevertheless impose an extremely strong toll on
the diffusing species through the gradient in Equation (47)
because l0X0/e @1. As for the kinetic behavior II of the 1D
problem, where adsorption equilibrium is not yet reached, a
is efficiently diverted towards the nanopore wall by its ex-
tremely large radial gradient. Therefore, it cannot proceed
any deeper within the pore beyond the point yt where the
local sites have already equilibrated, that is, a(y)=0 for 1<
y<yt. For yt<y�0 the term (@a/@c)c=1 vanishes locally be-
cause q(y)=a/(a+k)ffi1. Therefore a may diffuse freely be-
tween the pore entrance and the point at yt so as to provide
the flux which is consumed by the reaction at yt. It follows
that a(y)ffia(0)(1�y/yt) while presenting a negligible depend-
ence on the radial coordinate. This defines the kinetic zone
II for the 2D problem.

As for the 1D problem the above limiting kinetic behav-
iors I–III are best summarized by a zone diagram though
this is now a function of l0 and (X0/e) as shown in Figure 4b.
Figure 4c schematizes qualitatively the time variations of
a/c, q and f(t) in each kinetic zone I–III assuming that c=1
and kffi0 (see text and Appendix III).

Conclusion

The above analysis has allowed the delineation of the main
trends expected to be achieved when particles consisting of
thick bundles of nanopores (see Figure 1) are exposed to a
solution with the aim of sequestrating and concentrating a
dilute target species. Indeed, in such systems adsorption ki-
netics governs, in fine, the sequestrating power but diffusion
supplies the dilute species to the active centers lining the
nanopores walls. Thus diffusion plays a delicate game which
controls the overall activity, thus leading to clearly distinct
kinetic behaviors (see Figure 4). To the best of our knowl-
edge the ensuing complexity of the dynamics of such sys-
tems has never been considered previously for optimizing
their overall behavior or designing them for a special appli-
cation.

Such particles consisting of an ensemble of densely
packed nanotubes are prone to be used for a wide variety of
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applications ranging from the sequestration of dilute species
as considered here, to supported heterogeneous chemical
catalysis or supported enzymatic catalysis. Development of
new separating materials for electrophoresis and chromato-
graphic systems may also rely on the same concepts. Indeed,
in all such cases, ultimately a kinetic process takes place all
along the surface of the nanostructure while diffusion trans-
ports the reactant and possible products to and from the
active sites and the bulk solution surrounding the particle.
So ultimately the overall behavior of any of the above sys-
tems will comply in one way or another with the main
trends that have been delineated here. Indeed, though ad-
sorption/desorption kinetics considered in this study do not
imply an overall transformation of the target species as in
catalysis, its physicochemical formulation encompasses all
the other cases, except maybe that of enzymatic reactions
where Michaelis–Menten limiting kinetics (i.e., u=umax)
may be reached. Since the diffusion supply of the target spe-
cies provides spontaneously a wide range of concentrations
inside the reactive nanopore it is then expected that the en-
zymes located deeper within the nanopore will perform line-
arly while those closer to the pore entrance may perform in
the saturated kinetic region. This may somewhat alter the
generic behavior observed in Figure 4 essentially when l0 is
small while (X0/e) or (X0/h) is large.

Finally, another biological example where the concepts
delineated in the above model may find an important appli-
cation is that of macrophage distribution in blood capillaries
when a particular section of a capillary has been activated
due to a local infection. Indeed, then the penetration of the
macrophages through the capillary wall may be treated as a
reaction onto the activated capillary wall section.

For all these reasons we believe that a deeper understand-
ing of the delicate interplay between transport and wall re-
activity within nanotubes is required. As evidenced here
even for the simplest case of chemisorption the system in-
volves many parameters beyond the main ones which have
been considered here (Figure 4a and b) but will ultimately
add their specificities onto the overall behavior. To the best
of our knowledge this may be treated only through accurate
simulations which will be the scope of further works, to be
published elsewhere.

In particular, we have explained just above that the case
of enzymatic reactors consisting of long nanopores may
create poor efficiency due to the specific features of Michae-
lis–Menten kinetics. It may be advisable to consider shorter
and wider pores for such applications. Then the main ap-
proximations performed here which allowed a simple out-
come (Figure 4a and b) will not be valid anymore. Under
such circumstances, the system must be envisioned only as
outlined here in the section on Specificities of 2D-diffusion
reaction for a thick-walled nanopore, so that its numerical
treatment will be eased up by recasting it into its simpler
conformal space (see Figure 3).

Appendix

Appendix I : Average length of cylindrical nanotubes packed in a dense
array into a spherical particle

Since one nanopore occupies a cross-surface area of pd2 onto the particle
surface the maximum number, Nmax, of opened nanotubes is:

Nmax ¼
�
2Rpart

d

�2

ðA1Þ

Let us consider the sphere Sn of a smaller radius rn, inside of the particle
and concentric with it, which is crossed over by exactly n nanotubes, so
that 4pr2n=npd2. By definition, these tubes extend at least from the parti-
cle surface to the sphere Sn, so that their length, ln, is at least ln=Rpart�rn.
Then one obtains:

ln ¼ Rpart

�
1�
�

d
2Rpart

�
n1=2
�

ðA2Þ

from where it follows that the average nanotube length, L, in the spheri-
cal particle is:

Lav ¼ hlni ¼

RNmax

0

lndn

RNmax

0

dn
¼ Rpart

�
1� d

3Rpart
Nmax

1=2

�
¼
Rpart

3
ðA3Þ

On the other hand, rewriting of Equation (A2) gives the number, nb, of
nanotubes having a length bRpart (0�b�1) equal to

nb ¼
�
2Rpart

d

�2

ð1�bÞ2 ðA4Þ

The number Dnb of nanotubes having a total length L=bRpart, that is,
comprised between (b�Db)ORpart and (b+Db)ORpart, is readily obtained
by differentiation of Equation (A4). Thus, one obtains Equation (1)
given in the main text:

�Dnb

Db
¼ 8
�
Rpart

d

�2

ð1�bÞ ðA5Þ

which establishes that the histogram of nanopore lengths repartition is a
triangle.

This analysis shows that it is sufficient to consider the problem within a
single pore, and to perform afterwards an appropriate statistical treat-
ment to take into account the distribution of nanopores according to
Equation (A5), and that of particle sizes Rpart (note that d, representing
one chemical constraint, is not supposed to vary for a given type of mate-
rial). Since the issue of any prediction will be the time variation of a se-
lected parameter <, one obtains for one particle of radius Rpart :

h<Rpart
i ¼

RNmax

0

<Rpart
ðbÞdnb

RNmax

0

dnb

¼ 2
Z1

0

<Rpart
ðbÞð1�bÞdb ðA6Þ

where <Rpart
(b) is the value of parameter < predicted at any given time

for a nanopore of length L=bRpart performing within a particle of radius
Rpart. It then follows that h<i, the predicted experimental value of <, as a
function of time taking into account the whole distribution is:

h<i ¼
Z1

0

h<Rpart
iPRpart

Rpart ðA7Þ

where PRpart
=

dNRpart

dRpart
is the normalized distribution of particles as a func-

tion of their radii.
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Appendix II

Derivation of Equation (4): Under steady state spherical diffusion, the
concentration, C, of any species obeys the steady state form of the
second FickMs law:

@2C
@r2
þ 2
r
@C
@r
¼ 0 ðA8Þ

where r is the distance from the center of symmetry of the system. It fol-
lows readily that:

@C
@r
¼
P

g

r2
ðA9Þ

where �g is a constant, so that at any distance r (�C is a second con-
stant):

C ¼
X

C
�
P

g

r
ðA10Þ

Let C1 and C2 be the values of C at any two distances denoted r1 and r2,
respectively. Thus:

C1�C2 ¼ ðr2�r1Þ
P

g

r1r2
ðA11Þ

where �g may be expressed through Equation (A9) at distance r1, so
that:

C2�C1

r1�r2
¼ r1
r2

�
@C
@r

�
r¼r1

ðA12Þ

Equation (4) derives immediately from Equation (A12) when it is par-
ticularized for r1=Rpart+d and r2=Rpart.

Appendix III

Limiting kinetic behaviors for a single nanopore performing in a bulk so-
lution of infinite volume : Our purpose here is only to illustrate the conse-
quences of each limiting behavior I–III/IV which have been evidenced to
occur depending on the main parameters which govern the system. For
this purpose we wish to provide a rough semiquantitative evaluation of
the different kinetic behaviors which may be displayed by the system and
are sketched in Figure 4c. For this reason we limit ourselves to the (unre-
alistic) situation where a single nanopore operates into a solution of in-
finite volume so that the events occurring within the nanopore do not
modify significantly the bulk concentration (namely, u=0 and #=0 re-
spectively in Equations (30g) and (30k)). Therefore, here c(t)=1 at any t

value. Note that the ensuing expressions must then be considered only as
asymptotic ones. To be applied to any real circumstances the following
results must be convoluted with the time variation of c as documented in
sections on Dimensionless formulations and Limiting kinetic behavior.
This may alter slightly the limiting kinetic behavior derived below, but
the overall trends should remain.

In zone I, or during the first stage of the nanopore filling in zone III, the
target species extraction is controlled by its linear diffusion within the
pore without appreciable radial diffusion. The situation is similar to that
met in chronoamperometry when a planar electrode is placed within a
long thin layer cell without convection. Thus the diffusion wave propa-
gates as

ffiffiffi
t
p

except when it meets the bottom of the tube (y=1), that is,
when t!1. Therefore, for most of the durations of interest (t<1) one
has a(y,t)=erfc(y/2

ffiffiffi
t
p

). It follows that for a long nanopore, over most of
the time:

f ðtÞ /
ffiffiffi
t
p
=ðAþ

ffiffiffi
t
p
Þ ðA13Þ

where A is a constant close to unity. Thus f(t)/pt while the nanopore
fills up but slows down progressively when the bottom of the nanopore is
reached (i.e., when t!1). The limit f1 at infinite time of f(t) in zone I is
unity since both the pore core and its wall sites fill up at the same rate.

When the system is located into zone III the same behavior applies but
the nanopore wall sites do not react significantly while the nanopore core
solution is filling up. Thus:

f ðtÞ ¼ f ð1stÞðtÞ þ f ð2ndÞðtÞ ðA14Þ

where f(1st)(t)/pt stands for most of the fast initial stage (solution fills
up; see above) while the slow rising function f(2nd)(t) corresponds to the
second stage (nanopore wall sites react). Note that f(2nd)(t) significantly
differs from zero only after f(1st)(t) has reached its limit f ð1stÞ1 =1/(1+X0).

The sequestration of the second fraction of the species (namely the main
one which is slowly trapped by adsorption onto the wall sites) is given by
Equation (34) where now a=1 at each instant within the present approx-
imation. At infinite time f(2nd)(t) reaches the limit f(2nd)=X0/(1+X0), so
that:

f ð2ndÞðtÞ ¼ f ð2ndÞ1 ½1�e�l0t=ð1þkÞ	 ¼ X0½1�e�l0t=ð1þkÞ	
1þ X0

ðA15Þ

In zone IV (which is relevant only to the 2D problem), the same applies
except for the exponential argument in Equation (A15) which is propor-
tional to X0/e.

In zone II, the situation is quite different. The analysis developed for this
case (see main text) shows that the diffusional wave moves relatively fast
but that the adsorption kinetics inclines it to every point where the wall
sites are not yet filled up. Therefore a sharp front of propagation is creat-
ed at y=yt. Whenever 0<y<yt, a varies linearly with y and does not
depend significantly on the radial coordinate. Across this zone, q =1,
while beyond a vanishingly small distance da after yt [see Eq. (45)] a=

q=0 for yt<y<1.

Establishing the precise kinetics of f(t) in this zone requires simulations
due to the nonlinearity of Equation (44). However, one may estimate its
general behavior based on scaling factors. Indeed, the above analysis
showed that a(y)=a(0)(1�y/yt) whenever 0<y<yt. Thus, a(yt)/a(0)/yt

due to the linear decrease of the gradient while yt increases with time.
Thus, one has from Equation (46):

@q

@t
� l0ð1�qÞ½að0Þ=yt	 ðA16Þ

So the time duration dt necessary for filling up the ring located at yt and
having a surface area dA=2pRporedyt is:

dt / ytdyt=½l0að0Þ	 ðA17Þ

On the other hand, when the wave reaches yt, a surface 2pRporeyt of the
pore wall is completely filled up and a volume pR2

poreyt of the nanopore
core is half filled up. Thus, f= (X0+1/2)/(X0+1)yt, that is, fffiyt since X0@

1. It then follows from Equation (A16) that:

f df / l0að0Þdt ðA18Þ

Owing to our purpose in this Appendix, we again neglect the variations
of a(0), so that:

f /
ffiffiffiffiffiffiffi
l0t

p
=ðA0 þ

ffiffiffiffiffiffiffi
l0t

p
Þ ðA19Þ

which shows that f keeps again a diffusional-type behavior though this is
commanded now kinetically, namely, by the magnitude of l0 and not by a
Nernst–Einstein diffusion coefficient.
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